Hydropower is using water to power machinery or make electricity. Water constantly moves through a vast global cycle, evaporating from lakes and oceans, forming clouds, precipitating as rain or snow, then flowing back down to the ocean. The energy of this water cycle, which is driven by the sun, can be tapped to produce electricity or for mechanical tasks like grinding grain. Hydropower uses a fuel—water—that is not reduced or used up in the process. Because the water cycle is an endless, constantly recharging system, hydropower is considered a renewable energy.
When flowing water is captured and turned into electricity, it is called hydroelectric power or hydropower. There are several types of hydroelectric facilities; they are all powered by the kinetic energy of flowing water as it moves downstream. Turbines and generators convert the energy into electricity, which is then fed into the electrical grid to be used in homes, businesses, and by industry.
Working mechanism
Dam/water storage controls amount of water as well as the head. Intake gate where water flows into the penstock and penstocks carry the water to turbine. Inlet valve opens to let the water flows to turbine as the water flows out to river due to gravity. Water force acting on blades and turn turbine. The turbine then turned the coupled generator. The generated electricity from generator passes through step-up transformer ans transmitted to the load in the distance.
Advantages
- Clean renewable source
- Domestic source of energy
- Offer a variety of recreational opportunities
- Generate power to the grid immediately
- Flood control, irrigation, and water supply
Types of Hydropower Facilities
There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not.
Many dams were built for other purposes and hydropower was added later. The other dams are for recreation, stock/farm ponds, flood control, water supply, and irrigation.
Hydropower plants range in size from small systems for a home or village to large projects producing electricity for utilities.
IMPOUNDMENT
The most common type of hydroelectric power plant is an impoundment facility. An impoundment facility, typically a large hydropower system, uses a dam to store river water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. The water may be released either to meet changing electricity needs or to maintain a constant reservoir level.
DIVERSION
A diversion, sometimes called run-of-river, facility channels a portion of a river through a canal or penstock. It may not require the use of a dam.
PUMPED STORAGE
Another type of hydropower called pumped storage works like a battery, storing the electricity generated by other power sources like solar, wind, and nuclear for later use. It stores energy by pumping water uphill to a reservoir at higher elevation from a second reservoir at a lower elevation. When the demand for electricity is low, a pumped storage facility stores energy by pumping water from a lower reservoir to an upper reservoir. During periods of high electrical demand, the water is released back to the lower reservoir and turns a turbine, generating electricity.
Types of Hydropower Turbines
Propeller
|
A propeller turbine generally has a runner with three to six blades in which the water contacts all of the blades constantly. Picture a boat propeller running in a pipe. Through the pipe, the pressure is constant; if it isn’t, the runner would be out of balance. The pitch of the blades may be fixed or adjustable. The major components besides the runner are a scroll case, wicket gates, and a draft tube. There are several different types of propeller turbines:
The turbine and generator are a sealed unit placed directly in the water stream.
The generator is attached directly to the perimeter of the turbine.
The penstock bends just before or after the runner, allowing a straight line connection to the generator.
Both the blades and the wicket gates are adjustable, allowing for a wider range of operation. |
Francis | A Francis turbine has a runner with fixed buckets (vanes), usually nine or more. Water is introduced just above the runner and all around it and then falls through, causing it to spin. Besides the runner, the other major components are the scroll case, wicket gates, and draft tube. |
Kinetic | Kinetic energy turbines, also called free-flow turbines, generate electricity from the kinetic energy present in flowing water rather than the potential energy from the head. The systems may operate in rivers, man-made channels, tidal waters, or ocean currents. Kinetic systems utilize the water stream’s natural pathway. They do not require the diversion of water through manmade channels, riverbeds, or pipes, although they might have applications in such conduits. Kinetic systems do not require large civil works; however, they can use existing structures such as bridges, tailraces and channels. |